|
In mathematics, the F. and M. Riesz theorem is a result of the brothers Frigyes Riesz and Marcel Riesz, on analytic measures. It states that for a measure μ on the circle, any part of μ that is not absolutely continuous with respect to the Lebesgue measure ''d''θ can be detected by means of Fourier coefficients. More precisely, it states that if the Fourier–Stieltjes coefficients of satisfy : for all , then μ is absolutely continuous with respect to ''d''θ. The original statements are rather different (see Zygmund, ''Trigonometric Series'', VII.8). The formulation here is as in Walter Rudin, ''Real and Complex Analysis'', p.335. The proof given uses the Poisson kernel and the existence of boundary values for the Hardy space ''H''1. ==References== *F. and M. Riesz, ''Über die Randwerte einer analytischen Funktion'', Quatrième Congrès des Mathématiciens Scandinaves, Stockholm, (1916), pp. 27-44. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「F. and M. Riesz theorem」の詳細全文を読む スポンサード リンク
|